
CHAPTER

SEVENTEEN

DISTRIBUTED DATABASES

A database system is a collection of information together with programs to ma-
nipulate that information. These programs present the user of the database
with a structured interface to the database's information. We are interested
in databases because some of them are distributed|they store information in
many locations, often spanning great distances. Many advanced algorithms for
organizing distributed systems have been developed as a result of the demand for
coherent distributed database systems. Distributed databases strive to run pro-
grams at optimal locations (minimizing computation and communication costs)
and to ensure the correctness of concurrent transactions. Distributed databases
are among the most complex real distributed systems.

Database systems is a �eld in itself, suitable for study in advanced courses.
We are not, of course, going to cover the �eld in its entirety. Instead, we fo-
cus on the points of particular interest to coordinated computing: the control of
concurrency and distribution, and linguistic mechanisms for achieving this con-
trol. We introduce only a few formal database terms and assume no particular
background in the �eld. In the �rst section of this chapter, we discuss concur-
rency control, replication, and failure and recovery mechanisms for distributed
databases. In the second section, we introduce Argus, a language that incorpo-
rates notions of concurrency control, failure, and recovery into a programming
language. We recommend that the reader who wishes to understand database
systems in greater depth read one of the many texts on databases, such as Date
[Date 81], Ullman [Ullman 82], or Wiederhold [Wiederhold 83]. The material in
Section 17-1 is developed more thoroughly by Date [Date 83], Kohler [Kohler 81],

279

280 heuristics

and Bernstein and Goodman [Bernstein 81]. Argus, described in Section 17-2, is
the work of Barbara Liskov and her colleagues at M.I.T. [Liskov 83].

17-1 DATABASE CONTROL

Why distribute a database's data? Distribution greatly complicates constructing
a correct database system. Two important motivations for the distribution of
databases involve geography and reliability. Often, database users and data are
themselves physically distributed. For example, banks keep databases of their
customers' accounts. A bank with many dispersed o�ces may want local or
regional processing centers to ease the transport of records and reduce the delay
for inquiries. After all, most queries refer to local information and can be most
economically processed locally. Nevertheless, the branches still need occasional,
immediate access to the other regions' records. For example, if a customer from
another region wants to cash a check, tellers must be able to quickly get that
customer's records. Ideally, to the tellers, the customers' accounts should seem
to be a monolithic whole. They should not be burdened with the details of where
particular records are stored.

Second, distribution accompanied by replication can improve database reli-
ability. Replication is storing the same information at several network locations.
If the computer at the site of one copy of some particular datum is not working,
the information can be obtained from another site with the same datum. This
replication introduces the problem of ensuring that the multiple copies appear
to be the same at all times.

Thus, two important aspects of distributed database systems are the location
of the data and its consistent replication. A major design criterion for databases
is that these two facets remain transparent to the database user. That is, the
user should remain ignorant of which computer's data is being read, how far
away that computer is, and, in general, the existence of other concurrent users
of the database.

Transactions and Atomicity

Databases organize information. Let us call the smallest information structure
in a database a record. We imagine that primitive database operations read and
write records. A typical banking database might have a record for each customer's
checking account showing the account number, name, and balance; a typical
airline reservation system database might have a record for each reservation
showing the reserver, number of seats, and ight.

Some database queries or updates access only a single record and access
that record only once. For example, a request for an account balance only needs
to read the account record. However, most actions combine access to multiple
records (�nd the total balance in a customer's accounts by summing the balance

distributed databases 281

in each), multiple varieties of access (�nd the balance in a customer's account,
increment it by the amount of a deposit, and store the new balance), or a combi-
nation of reading and writing multiple records (transfer funds from one account
to another).

Optimally, a database should be \correct" at all times. That is, it should
always satisfy some consistency constraints. Thus, if a database stores both in-
dividual records of ight reservations and the total number of seats remaining
on a ight, the total of all reservations and the remaining seats should remain
constant (the number of seats on the plane). Unfortunately, this is not possi-
ble in general; the steps involved in updating the individual records leave the
database temporarily inconsistent. For example, consider the following program
which creates a reservation for a seat on ight f for customer c:

reserve (f: ight; c: customer) �

avail := read (f, available seats);

if avail � 1 then

begin

write (f, new customer record (c)); - - (1)

write (f, available seats, avail � 1) - - (2)

end

After line (1), the database is inconsistent. The total number of customer reser-
vations and available seats exceeds the plane's capacity. Of course, the program
quickly corrects this imbalance on line (2). Since inconsistent program steps are
used in writing consistent programs, we cannot expect to have the database con-
sistent at all times. Instead, we de�ne a transaction to be an operation that
takes the database from one consistent state to another consistent state. During
any given transaction the database may be temporarily inconsistent. However,
by the end of the transaction the database must be consistent again. For the
remainder of our discussion, we assume that all user operations on our example
database are transactions (if viewed in isolation from all other operations).

Databases often have many simultaneous users. For the database as a whole
to preserve consistency, it is crucial that transactions be atomic|that trans-
actions seem to be indivisible and instantaneous. Other processes should not
become aware that a transaction is in progress. The transaction must also ap-
pear internally instantaneous|it should not see both the \before" and \after"
of any other transaction.

In Section 3-2 we de�ned atomicity and presented an example of the inconsis-
tency that can result when it is violated. It is helpful to review a similar example

in our database context. Let us consider what happens if two di�erent processes
(transaction managers) simultaneously try to reserve a seat on ight 132 for cus-
tomers Smith and Jones. We assume that there is a single remaining seat. As
usual, each transaction manager has its own local temporary, avail (avail0).

282 heuristics

Smith's Jones's

transaction manager transaction manager

avail := read (ight 132, �

available seats); �

� avail0 := read (ight 132,

� available seats);

- - avail is 1, so - - avail 0 is 1, so

write(ight 132, �

new customer record (Smith)); �

� write(ight 132,

� new customer record (Jones));

write(ight 132, �

available seats, 0) �

� write(ight 132,

� available seats, 0)

Smith and Jones have both been given the last seat. The ight is now over-
booked.*

Of course, the problem is that the steps of the two transactions have been
interleaved. Clearly, if we had executed the transactions sequentially (in either
order), the database would have remained consistent. However, this is not to
imply that transactions cannot be safely executed simultaneously. If Jones had
been reserving a seat on ight 538, then the operations of his reservation could
have been harmlessly interleaved with Smith's. We call a schedule an ordering
of the elementary steps of a set of transactions. A schedule is serial if whole
transactions are executed consecutively, without interleaving of the steps of other
transactions. A schedule is serializable if its e�ect is equivalent to some serial
schedule. In general, the goal in distributed databases is to produce a serializable
schedule that maximizes potential concurrency|that is, to give each user the
appearance of serial execution while still doing many things at the same time.

A slightly more general description of the previous conict is that each trans-
action tried to �rst read and then update the same record. Schematically, this
becomes

Time Transaction P Transaction Q

0 Read (r) �

1 � Read (r)

2 Write (r) �

3 � Write (r)

That is, at time 0, transaction P reads record r. At time 1, Q reads r. Each
remembers what it has read. When P writes r at time 2, Q's knowledge of the

* No, this is not how airlines really run their reservation systems.

distributed databases 283

database is now incorrect. Based on that incorrect value, its database update at
time 3 can lead to an inconsistent state.

A concurrency control mechanism has three places that it could intervene to
prevent this inconsistency:

(a) At time 1, it could deny Q access to r, because P has already read it
(and is likely to change it).

(b) At time 2, it could refuse to let P write a new value for r, because Q is
looking at the old value.

(c) At time 3, it could refuse to let Q write a new value for r, because its
update is based on the (now) incorrect value of r.

Many di�erent algorithms for concurrency control have been developed. The two
most important and recurring themes are locks and timestamps. Locks are used
to ensure the synchronization of methods (a) and (b); timestamps for methods
(b) and (c).

Locks Locking associates a lock with each database object. A transaction that
locks an object makes that object inaccessible to other transactions. A trans-
action that tries to lock an object that is already locked must do one of three
things: (1) wait for the object to unlock, (2) abort, or (3) cause the locking trans-
action to abort. Each of these possibilities has its costs. Waiting for the object
to unlock reduces the potential concurrency in the system. More signi�cantly, a
pure waiting strategy can produce deadlock (processes waiting for each other).
This deadlock must be detected and resolved by aborting one of the deadlocked
transactions. Aborting a transaction involves restoring the objects the transac-
tion has changed to their state before the transaction began (rollback). In order
to be able to rollback, the system must maintain the old versions of records until
it is sure that the transaction will not abort. Since the transaction itself is not
in error (the problem was its coincidence with another transaction), it should be
rerun.

Locking has the advantage of being able to ensure serializability. More specif-
ically, Eswaran et al. [Eswaran 76] have shown that if every transaction is well-
formed and two-phase then the resulting system is serializable. A transaction
is well-formed if (1) it locks every object it accesses, (2) it does not lock any
already-locked object, and (3) it eventually unlocks all its locks. A transaction
is two-phase if it does all of its locking before any of its unlocking. Two-phase
transactions pass through the phases of �rst acquiring locks and then releasing
them.

The simplest kind of lock is an exclusive (write, update) lock. When a trans-
action places an exclusive lock on an object, it is the only transaction that can
read or write that object. For example, a transaction should obtain an exclusive
lock if it intends to read a record, compute a new value for that record, and

284 heuristics

update the database with the new value. If another process wrote a di�erent
value into the record between the transaction's read and its write, that process's
update would be overwritten and lost.

A transaction that only needs to read the database (and not update it)
does not require such strong protection. For example, a transaction to compute
the sum of a customer's accounts (but not store that sum in the database)
would need to prevent a transfer of funds from one account to another during
its computation. However, no harm results from another transaction reading the
value of one of that customer's accounts while the �rst is processing. To handle
this possibility, some systems provide shared (read) locks. A process that writes
a database record must eventually obtain an exclusive lock on it. However, it can
allow shared access until an update phase. Several processes can have shared locks
on a record simultaneously. The system must still ensure that lock attempts fail if
a transaction tries to get an exclusive lock and another transaction holds any lock
on that record, or a transaction tries to get a shared lock and another transaction
holds an exclusive lock on that record. Exclusive locks implement concurrency
control mechanism (a) (see page 283), while shared locks implement mechanism
(b).

Locking requires two steps, requesting the lock and granting it. Requests for
a lock on a resource are directed at the resource's lock manager. Centralizing
the lock management of all records at a single site simpli�es the design of a dis-
tributed database and reduces the communication required to obtain and release
locks. However, this scheme has two weaknesses: the lock manager is a potential
communication bottleneck, and the entire system fails when the lock manager
fails. Alternative structures involve making each database site the manager of its
own data or distributing the management of record copies so that all the copies
of any record are managed at a single site, but many sites are managers.

In a locking system, deadlock occurs when transactions are waiting for each
other. Deadlock should, by now, be a familiar theme; avoiding the deadlock of
�ve single-forked philosophers has been our goal in several example programs in
earlier chapters. Operating systems often avoid deadlock by forcing processes to
preclaim the resources they intend to use. That is, if a job requires two forks or
�ve tape drives it must ask for them when it commences, not incrementally as it
is running. Unfortunately, such deadlock avoidance techniques are inappropriate
for databases. Transactions cannot know ahead of time which records they will
access. On the contrary, a transaction often discovers the next search item only
by analyzing the data in the last.

Since deadlock is hard to avoid in a locking database, deadlocks must be
discovered and broken. The two primary mechanisms for resolving deadlocks
are time-outs and deadlock detection. With time-outs, a transaction that has
been waiting \too long" on a locked record aborts and restarts. This has the
advantage of being easy to implement, but the disadvantage of being somewhat
unfocused in its approach. If the waiting period is too short, some transactions
may abort that are not deadlocked; if the waiting period is too long, the system

distributed databases 285

stays locked longer than necessary. Similarly, time-outs preclude fairness | a
locked-out transaction can be timed-out repeatedly.

Deadlock detection steps above the actual locking processes and examines
the waiting-for relation. In particular, if transaction A has a lock on record r,
and transaction B is waiting for that lock, then B is waiting for A. A deadlock
is a cycle of waiting transactions, with transaction A0 waiting for A1 waiting
for : : : waiting for An waiting for A0. An algorithm for distributed deadlock
detection requires potentially deadlocking transactions to report their waiting-for
relationships to the deadlock detector. Practical distributed deadlock detection
algorithms are a subject of current research.

Timestamps Locking is a pessimistic strategy. It assumes that transactions will
conict and acts to prevent that conict. An alternative, \optimistic" approach is
to assume that transactions will not conict and to act only when they do. If this
optimism is justi�ed, the system enjoys increased concurrency, as transactions
never wait on a lock. However, if this optimism is misplaced, the system performs
redundant work, as actions that produce conict are rerun.

The best way to implement the concurrency control mechanism (c) (see
page 283) is with timestamps. (Timestamps can also be used to implement the
mechanism (b).) A timestamp is a unique number associated with an object or
event. This number can be thought of as the \time" the timestamp was issued.
Although real times do not have to be used with timestamps, timestamps must
be chosen from a strictly monotonic sequence. That is, if timestamp A is assigned
after timestamp B, then A should be greater than B.* Since timestamp systems
never lock, the only way to prevent other transactions from seeing partial e�ects
of a transaction is to make all the transaction's changes simultaneously, at the
end of its execution (at commit time). Later in this section we discuss the two-
phase commit algorithm which ensures either that all of a transaction's changes
take e�ect or that none of them do.

Conict occurs when a transaction tries to read a record written by a younger
transaction (one with a larger timestamp) or tries to write a record that has al-
ready been seen or written by a younger transaction. (Thus, to detect conict the
system must maintain, for each record, the timestamps of the youngest transac-
tion that has read that record and the youngest transaction that has successfully
written it. Successful writing is committed writing.) Conict can be resolved by

* The astute reader may wonder how unique times are to be generated in a distributed

system. One awkward way would be to have a centralized timestamp authority. This su�ers

from all the usual problems of introducing a central point to a distributed system. A better

algorithm is to let each process issue timestamps that are the concatenation of that process's

real time and its unique identi�er. (The real time must be the higher-order bits.) This ensures

that no two timestamps are the same (provided each process's clock \clicks" between issuing

timestamps). Of course, process clocks may lose synchronization. This problem can be overcome

by using the timestamp information of the communications each process receives to update its

clock. An algorithm to ensure this synchronization is described by Lamport [Lamport 78].

286 heuristics

waiting for a conicting transaction to terminate (wait), or by aborting and
restarting a transaction. A transaction can decide to restart itself. We call this
action dying. Alternatively, a transaction could try to cause another transac-
tion to restart. This is called wounding, because the wounded transaction may
have already begun to commit its database changes and ought not be killed. If
a wounded transaction has not already committed, it is aborted and restarted.
The particular action taken is based on comparison of the timestamps of the
conicting transactions.

Two of the more prominent timestamp conict-resolution algorithms are
Wait-Die and Wound-Wait [Rosenkrantz 78]. In Wait-Die, if the requesting
transaction is older it waits ; otherwise it dies. In Wound-Wait, if the requesting
transaction is older it wounds; otherwise it waits. (In each case, the �rst word
describes the action of the requester if it is older, and the second word the ac-
tion if it is younger.) Both protocols guarantee consistency and freedom from
starvation. Both give priority to older transactions; in Wait-Die, an older trans-
action is spared death, while in Wound-Wait, an older transaction can attempt
to preempt a younger one. Wait-Die has the undesirable property that a dying
transaction can repeat the same conict; Wound-Wait lacks this fault. On the
other hand, a transaction under Wound-Wait can be interrupted at any time
before committing, perhaps even during output, while a Wait-Die transaction
only aborts at program-de�ned points (e.g., before accessing a data record).

Summary Locking and timestamps each have advantages. Locks require little
space and (as Gray et al. [Gray 75] show) can be used with larger structures than
single records. On the other hand, timestamp systems never deadlock and there-
fore do not have the problem of deadlock detection and resolution. The ultimate
practical algorithms will probably combine some aspects of each, perhaps treat-
ing the serialization of reading and writing di�erently. Bernstein and Goodman
discuss many of the possible combinations of control strategies, showing that al-
most all can be described as a selection from a regular framework [Bernstein 81].

Replication

Data in a distributed database is, by de�nition, spread over several physical
sites. One possible database organization is to store each record in one unique
location. An alternative scheme is to replicate records, storing copies in several
places. Replication can improve both performance and reliability. It improves
performance by allowing a process to obtain data from a near copy instead of a
distant original. Often, the major computational cost of a distributed query is
the communication cost. (Of course, the ultimate near copy is one on the same
processor as the requesting process.) Replication improves reliability because the
failure of a site does not mean that a data set is inaccessible. Along with these
advantages come the problems of propagating changes to all copies of a record

distributed databases 287

Figure 17-1 Subnet partition through failures.

and ensuring that all copies appear to be the same at all times. In general,
replicated systems should provide replication transparency | the user of the
database should not discover which copy has been accessed (or even where or
how many copies exist).

The possibility of individual site failures complicates the design of replicated
systems. How can a system propagate updates to all copies of a record in the
presence of failure? One technique is to update the working sites immediately and
to keep a list of updates for the failed sites to read when they resume processing.
When a site revives it needs to obtain its update list and perform the requested
actions before processing new requests.

However, site failure is not the only kind of failure a system can experience.
Both the failure of communication links and the failure of key network sites can
break communication connectivity. These failures can partition the network into
disjoint subnetworks (as in Figure 17-1) which are unable to communicate. In-
consistency may result if the subnetworks continue processing, updating their
versions of the database. For example, two di�erent subnetworks unable to syn-
chronize their transactions might each give the last seat on our hypothetical
ight to two di�erent customers.

One replication algorithm that deals with the partitioning problem makes
one copy of each record the primary copy. Di�erent sites hold the primary copies
of di�erent records. The system �rst directs updates to the primary copy. When
this copy has been changed, it propagates the updates to the rest of the database.

288 heuristics

(The system must also ensure that if a transaction has written a record its
subsequent read operations on that record see an updated copy.) Thus, if the
network becomes partitioned, only the sites in the partition with the primary
copy can update a record. However, the other sites can continue to read the
record's old value. This scheme has the disadvantage that if the primary site for
the record fails, the record cannot be updated at all.

Adiba and Lindsay propose an alternative approach to this problem, database
snapshots [Adiba 80]. They suggest that many applications do not need exact,
up-to-the-millisecond accurate views of the database. Instead, the system should
periodically distribute copies of records (snapshots). Most applications will �nd
that these copies satisfy their needs. When a program needs the exact value of a
�eld, it can request it from the primary copy. Of course, updates are still directed
at the primary copy.

Failure, recovery, and two-phase commit The design of a reliable system
starts by specifying the meaning of reliability. This includes analyzing the kinds
of errors expected and their probabilities, and de�ning an appropriate response
to each. Kohler's Computing Surveys article is a good overview of failure, reliabil-
ity, and recovery [Kohler 81]. Reliable database systems are built around stable
storage that survives system failures (typically disk storage) and holds multiple
copies of data records. In the discussion below we assume that the techniques
described in that paper are followed and that disk storage is (adequately) reli-
able. That is, the database that writes a �le on the disk will (with a high enough
probability) be able to read back that same �le.

Transactions are, by de�nition, atomic. If a transaction intends to change
several di�erent database records it must (to preserve its atomicity) either change
them all or change none. Because individual sites can fail at any time, the prob-
lem of committing all the updates of a transaction together is more di�cult
for distributed systems. A transaction that does not commit at every site must
rollback to the previous state and restart.

Reliability and the ability to rollback depend on keeping an incremental

log of changes to the database on stable storage. This log must contain enough
information to undo any un�nished transaction and to complete any committed
transaction. E�ectively, the incremental log keeps a record of system intentions.
This record is used by the recovery procedure to determine what has been done
and what remains to be done. A node runs its recovery procedure when it resumes
processing after a failure.*

* By and large, the system that intends to do action X must �rst (1) write to stable storage

that it intends to do X and then (2) do X. If it fails while writing its intentions, then the

system is still in a consistent state; X has not been done at all. If it fails while doing X, then

the recovery procedure can read the intention from stable storage, discover what part of the

operation has completed, and continue or rollback. Systems must be sure not to �rst (1) do X

and then (2) write to stable storage that X was done. If such a system fails after (1) but before

(2) it cannot determine how to recover (or even if it needs to recover).

distributed databases 289

The standard algorithm for ensuring that the updates of a transaction ei-
ther all commit or all abort is two-phase commit [Gray 79; Lampson 76]. With
two-phase commit, every transaction has a commit coordinator. The commit co-

ordinator is responsible for coordinating the other sites of the transaction (the
cohorts), ensuring that every cohort either commits or every cohort aborts. As
you might expect, two-phase commit has two phases. In the �rst phase, the com-
mit coordinator alerts the cohorts that the transaction is nearing completion. If
any cohort responds that it wants to abort the transaction (or does not respond
at all), the commit coordinator sends all the cohorts abort messages. Otherwise,
when all cohorts have responded that they are ready to commit, the commit
coordinator starts the second phase, sending commit messages to the cohorts.
At that point the transaction is committed. More speci�cally, the algorithms for
the commit coordinator and cohorts are as follows:

Phase one

Commit coordinator

(1) Send a prepare message to every cohort.

(2) If every cohort replies ready then proceed to Phase 2. If some cohort
replies quit or some cohort does not respond (within the time-out inter-
val) then:

(3) Write an abort entry in the log. Send an abort message to every
cohort. Receive acknowledgments from each cohort and enter in the
log. Repeat abort message to each cohort until it acknowledges.

(4) Terminate the transaction.

Cohort

(1) Receive a prepare message from the commit coordinator.

(2) Choose a response, ready or quit, and write that response on stable
storage. Send that response to the commit coordinator.

Phase two

Commit coordinator

(1) Write a commit entry in the log. (The transaction is now committed.)

(2) Send a commit message to each cohort.

(3) Wait for an acknowledge response from each cohort. Enter acknowledg-
ment in the log. Repeat commit message to each cohort until it acknowl-
edges.

(4) Enter completed in the log and terminate.

Cohort

(1) Receive message from commit coordinator. If it is commit then:

290 heuristics

(2a) Release locks and send commit coordinator acknowledge.

otherwise:

(2b) Undo actions, release locks, and send commit coordinator acknowl-
edge.

If the commit coordinator fails during this protocol, its recovery procedure is as
follows:

Recovery procedure

Commit coordinator

(1) If it failed before writing the commit entry in the log, continue the com-
mit coordinator at step (3) of Phase 1 (abort the transaction).

(2) If it failed after writing the completed entry in the log, the transaction
has been completed.

(3) Otherwise, start the commit coordinator at step (2) of Phase 2.

17-2 ARGUS

Atomic actions, recovery, and two-phase commit are clever inventions. This sec-
tion is an overview of Argus, a language based on these ideas. Argus is concerned
with manipulating and preserving long-lived, on-line data, such as the data of
databases. Argus builds on the semantic architecture of remote procedure calls
with processes whose communication structure resembles Distributed Processes
(Section 13-2). Argus draws its syntactic and semantic foundation from CLU, a
language developed around the ideas of data abstraction [Liskov 77]. It extends
Distributed Processes in several ways, the most important of which is by making
each external call part of an atomic action. This involves providing mechanisms
to abort the calling structure if part of an atomic action fails and to recover
from such failures. This recovery mechanism allows a software representation
and resolution of hardware failures.

Actions and Atomicity

The primitive processing object in Argus is a guardian | the \protector" of
a resource, such as permanent data. Guardians have handlers (procedure en-
tries) that can be called by other guardians. Guardians and handlers parallel the
processes and procedure entries of Distributed Processes.

A guardian can have two kinds of storage, stable storage and volatile stor-
age. Stable storage survives failures of the guardian (crashes of the guardian's
processor) while volatile storage is destroyed by such failures. Therefore, volatile
storage can be used only to keep redundant information, such as a cache or an
index into a data structure. Atomic actions transform stable storage from one

distributed databases 291

Figure 17-2 A topaction-subaction tree.

consistent state to another. Argus guarantees that atomic actions have the ap-
propriate e�ect on stable storage|all changes made by an atomic action are
seen by other actions as having happened simultaneously; either all the changes
of an atomic action take place or none do.

A primitive atomic activity in Argus is an action. An action completes by
either committing or aborting. Of course, if an action aborts, the e�ect should be
the same as if the action had never begun. Argus achieves serializable schedules
by locking and (within the context of locking) keeping versions of stable storage.
(However, as we shall see, versions in Argus are not as general a mechanism as
the versions of timestamp systems.)

Argus has two kinds of actions, topactions and subactions (nested actions).
A topaction is an attempt to get the stable storage of a system to achieve a
new consistent state. If a topaction fails or aborts, all changes made by that
topaction are discarded. While executing a topaction, a program can invoke
other subactions.

Subactions play two important roles. The �rst is that concurrent activities
are usually run in subactions. Subactions see the changes caused by their ancestor
actions, but appear atomic to their sibling and cousin subactions. The other is
that remote procedure calls (calls to the handlers of other processes) are always
done in subactions. No subaction runs concurrently with its parent action.

Subactions can themselves have subactions. To another action, the subac-
tion is invisibly part of the topaction. Thus, subaction invocation forms a tree
structure, as in Figure 17-2. Like topactions, subactions can either commit or
abort. Aborting a subaction does not abort its parent. Instead, the parent can
detect the abort and respond accordingly. However, if a parent action aborts,
all changes caused by its subactions are rolled back; the subactions are aborted,
even if they had already reached their commit points.*

* The concept of subactions is not original with Argus. Earlier work on nested actions

includes Davies [Davies 78], Gray et al. [Gray 81], and Reed [Reed 78]. Argus's novel idea is to

make actions and subactions part of a programming language.

292 heuristics

Argus uses a locking protocol to synchronize data access. It allows read
locks and write locks. Issuing a write lock creates a new version of the locked
object. The action then updates this version. If the action ultimately commits,
this version becomes the \real" version of the data record and the old version
is discarded. If the action ultimately aborts, the new version is discarded. These
versions can be kept in volatile storage because they are temporary until their
ancestor topaction commits. Argus uses two-phase commit to ensure that com-
mitted versions become permanent. Argus does not detect deadlocks. Instead,
user programs can time-out topactions that appear deadlocked.

The introduction of subactions complicates the locking rules. Argus permits
an action to obtain a read lock on an object if every holder of a write lock on that
object is an ancestor action. An action can obtain a write lock if every holder
of any lock on that object is an ancestor. For example, we imagine that the
subaction structure shown in Figure 17-3 has evolved, with actions A through
L having the indicated read (R) and write (W) locks on objects x, y, and z.
Subaction J could now obtain a read lock on z [R(z)] and a write lock on x

[W(x)]. However, J cannot obtain a read lock on y [R(y)], as C, a nonancestor,
has a write lock; nor can it obtain a write lock on z [W(z)], as F, a nonancestor,
has a read lock.

Since several actions could have write locks on a given object simultaneously,
Argus must maintain multiple versions of objects. However, as actions with write
locks form an ancestor chain and actions do not run concurrently with their
descendants, only a single version of any object is active at any time. The versions
of any object thus form a stack. All access is directed to the version at the top
of the stack. When a subaction with any lock commits, its parent inherits its
locks. When a subaction with a write lock commits, its version becomes the new
version of its parent. Versions of aborting subactions are discarded.

Figure 17-3 Locking rules for subactions.

distributed databases 293

Argus also permits an action to start a new topaction|a nested topaction.
Such a new topaction has no particular privileges with respect to its parents.
In particular, it does not inherit their locks. When a nested topaction commits,
its changes become permanent. Aborting its parent action does not erase them.
Nested topactions are useful for benevolent side-e�ects, such as caching data
closer to its user or updating system performance statistics.

Guardians

A guardian type declaration has seven parts: (1) a name, (2) creation routines,
parameterized functions that can be invoked to create a new instance of this
type of guardian, (3) stable storage that survives process failures and is safely
updated by the commit of a topaction, (4) volatile storage that does not survive
guardian crashes, (5) handlers (entry procedures) that other guardians can call
to send requests to this guardian, (6) a background routine that runs the program
of the guardian, and (7) a recovery routine that the guardian runs to recover from
a crash. Recovery runs as a topaction. It is responsible for restoring the volatile
storage of the guardian to a consistent state.

The description of a guardian type can provide several functions to create
guardians of that type. The creation operation can specify on which physical
node of the distributed system the guardian is to reside. These creator functions
can be used to initialize the guardian's storage. They usually return the name of
the new guardian. A guardian (being an object on stable storage) can be deleted
in only two ways: if the action which created it aborts, or if it speci�cally self-
destructs. The run-time action of Argus resembles Distributed Processes: the
background program of each guardian runs and calls the entry procedures of
other guardians; the guardian's handlers accept calls from other guardians. Un-
like Distributed Processes, Argus spawns a new process for each external request
and runs these requests in the guardian concurrently. A guardian's background
task starts running and its handlers begin accepting calls immediately after the
completion of creation or recovery.

Argus is a language based on objects. Often the referent of local storage is an
external object. Certain objects are atomic. Atomic objects are referenced and
changed under the rules of atomicity. The stable storage of a guardian should
contain only references to atomic objects. For example, an atomic ag that is a
single atomic boolean is declared as follows:

atomic ag = cluster is create, set, test - - Cluster de�nes a new \user" data

type. One can create, set, or test

an atomic ag.

rep = atomic record[ag: bool] - - An atomic ag is represented in

terms of the primitive

atomic record

294 heuristics

create = proc (ag: bool) returns (cvt) - - Cvt converts between an

external, abstract

representation and an

internal, concrete one.

set = proc (af: cvt, ag: bool)

af.ag := ag

end set

test = proc (af: cvt) returns (bool)

return(af.ag)

end test

end atomic ag

Argus introduces concurrency with the (coenter) statement, a form of cobe-
gin. This statement initiates a parallel group of subactions or topactions. Argus
provides an iterator (coroutine) construct in the coenter statement that gener-
ates elements and starts a process for each.

A child subaction of a coenter can abort its siblings. Thus, an Argus program
seeking the value of a record from several sites of a distributed database could
request them all in a single coenter, allowing the �rst subaction that succeeds
to terminate the other requests.

In Distributed Processes, processes synchronize by setting the storage of a
called process and testing it in guarded commands. Argus dispenses with this
indirect mechanism. The primary use of synchronization is to ensure that data
updates are consistent. But Argus's raison d'être is the consistent update of
shared storage. Hence, calls to the handlers of a guardian are scheduled by the
system independent of any explicit programmer control.

Dining philosophers We present a program to model the dining philosophers
problem as our example of an Argus program. Unlike our other dining philoso-
phers programs, this program does not have a centralized \room" object to
prevent deadlocks. Instead (perhaps in keeping with more conventional eating
habits), our philosophers try to pick up two forks. If a philosopher cannot get
two forks soon enough, she backs o�, dropping the forks to try again later. We
ensure getting either two forks or none by making fork selection an atomic ac-
tion. We run this action in parallel with an \alarm clock" action that aborts the
pickup operation on time-out. Figure 17-4 shows the subaction structure of a
single attempt to take two forks. This example uses the exception mechanism of
Argus. A process that signals an exception transfers control to the closest (on
the run-time stack) exception handler that handles that exception. Syntactically,
the identi�er except de�nes an exception handler, which lists in when clauses the
various signals it handles.

distributed databases 295

Figure 17-4 The subaction structure of claiming forks.

philosopher = guardian - - the declaration of a process type

- - Argus guardian declarations begin with a speci�cation part that indicates

the names of both functions to create new instances of that type and

that guardian's handlers (entry procedures).

is create - - This function returns a new philosopher. A philosopher does

not have any entry procedures.

- - These variables are on stable storage and survive the failure of the

guardian's processor.

stable left, right : tableware - - the two forks passed this guardian on its

creation

stable taken : atomic ag - - set when this philosopher has her forks

recover

drop

- - The guardian recovers from crashes by dropping any forks

she might have.

end - - Argus eschews semicolons.

background

while true do - - Repeat ad nauseam.

- - think

take

- - eat

drop

end

end

- - This function takes two forks and returns a new philosopher.

create = creator (l, r: tableware) returns (philosopher)

left := l

right := r

taken := atomic ag$create(false)

return (self)

end create

296 heuristics

take = proc () - - to pick up both forks

while true do

enter topaction - - start a top-level action

coenter - - run the fork-getter and the alarm, in

parallel, as subactions

action - - fork-getter

coenter

action left.pickup

action right.pickup

end

atomic ag$set(taken, true)

return - - abort alarm, commit pickups

action - - the alarm process

sleep (100 + random())

- - Delay some appropriate time. Make

this delay include a varying element.

exit timeout - - abort fork-getting

end

except

when timeout, already taken:

when failure (*):

abort leave

end except when failure(*): end

sleep (200 + random()) - - Wait awhile before trying again.

end

end take

drop = proc () - - We drop the forks in a single topaction, dropping

each in its own subaction. Either they both succeed or

neither does.
while true do

enter topaction

begin

if atomic ag$test(taken)

then coenter

action

left.putdown

right.putdown

end

atomic ag$set (taken, false)

end

return

end except when failure(*): end

abort leave

distributed databases 297

end except when failure(*): end

end

end drop

end philosopher

Forks return normally if free and picked up. They abort and signal an error if
busy. The fork preserves its state in a single boolean variable.

tableware = guardian

is create

handles pickup, putdown

stable busy: atomic ag - - Keep the state of the fork on stable storage.

- - Forks have neither a recovery nor a background section.

create = creator returns tableware

busy := atomic ag$create(false)

return (self)

end create

pickup = handler () signals (already taken)

if atomic ag$test(busy) then

signal already taken

end

atomic ag$set(busy, true)

end pickup

putdown = handler ()

if not atomic ag$test(busy) then

abort signal failure (\not picked up")

end if

atomic ag$set(busy,false)

end putdown

end tableware

The following statements create an array of �ve forks and an array of �ve
philosophers, each indexed starting with 0. (Arrays in Argus are dynamic struc-
tures with no upper bounds.) The for loops pass the appropriate forks to the
appropriate philosophers. Creating the guardians (calling their creators) sets
them running.

forks : array[tableware] := array [tableware]$[0:]

philos : array[philosopher] := array [philosopher]$[0:]

298 heuristics

for i: int in int$from to(0, 4) do

array[tableware]$addh(forks, tableware$create())

end

for i: int in int$from to(0, 4) do

array[philosopher]$addh(philos,

philosopher$create(forks[i], forks[(i + 1)//5])) - - // � mod

end

Perspective

Argus hones the procedures and procedure entries of conventional distributed
programming languages into a tool directed precisely at the problems of dis-
tributed information storage systems. The other systems we have studied so far
treat communication as the quantum unit of distribution. The programmer is
responsible for building these quanta into a coherent algorithmic pattern. Argus
identi�es a class of conversations (atomic actions) involving many distributed
processes and provides speci�c mechanisms for organizing these actions. A pro-
grammer can provide for one action in such a set to terminate the others or
can insist that all must complete together. Argus is thus a heuristic approach to
distributed computing|a recognition that coordinated problem solving requires
tools that are both general and tuned to the issues of distribution.

PROBLEMS

17-1 Transaction A, with timestamp 2880, accesses database record R. If transaction B,

with timestamp 2881, now tries to read record R and then update it, what happens? Assume

that the system is using the conict resolution scheme Wait-Die.

17-2 Repeat the previous exercise for Wound-Wait.

17-3 Transaction B, with timestamp 2881, accesses database record R. If transaction A,

with timestamp 2880, now tries to read R and then update it, what happens? Assume that

the system is using the conict resolution scheme Wait-Die.

17-4 Repeat the previous exercise for Wound-Wait.

17-5 Could the synchronization mechanisms of timestamps be used to introduce \safe"

side-e�ects to IAP (Chapter 12)?

17-6 In Argus, how can the parent of a subaction abort while the subaction is still running?

17-7 Why do the sleep commands in the dining philosophers program include a random

value?

17-8 Write an Argus program that books a multiple-segment airline trip by negotiating with

the ticket reservation guardian of each airline. Make sure that your program reserves either all

the seats for a trip or none of them.

17-9 Often bids for houses are contingent on the sale of the bidder's house. Such contingent

bids expire after a speci�ed time. Write an Argus program that mimics the bidding and sales

of several house traders. Represent each house by a guardian that is receptive to certain bids.

Con�rm sales only after all contingencies have been removed.

17-10 Program in Argus a majority-vote commit algorithm. In such a system, a transaction

that commits at a majority of sites is deemed to have committed. Thus, the changes made

distributed databases 299

by that transaction are made permanent at those sites that have committed. Bernstein and

Goodman's survey article discusses majority voting algorithms in detail [Bernstein 81].

REFERENCES

[Adiba 80] Adiba, M. E., and B. G. Lindsay, \Database Snapshots," Proc. 6th Int. Conf.

Very Large Data Bases, Montreal (October 1980), pp. 86{91. Adiba and Lindsay propose

that a database system take \snapshots" of the state of the database, distribute the

snapshots, and use them for later processing. A process can use a local snapshot rather

than requesting the information from a central repository.

[Bernstein 81] Bernstein, P. A., and N. Goodman, \Concurrency Control in Distributed

Database Systems," Comput. Surv., vol. 13, no. 2 (June 1981), pp. 185{222. Bernstein

and Goodman survey the state of concurrency control for distributed databases. They

break concurrency control into two major subproblems, the synchronization of a reader

and a writer, and the synchronization of two writers. They state several techniques for each

subproblem and show how almost all practical algorithms for synchronization that have

appeared in the literature are a selection of one of their techniques for each subproblem.

[Date 81] Date, C. J., An Introduction to Database Systems, 3d ed., Addison-Wesley, Reading,

Massachusetts (1981). Date's book is a good general introduction to database systems. It

includes material on the nature of databases and the three major database models: the

relational, hierarchical, and network models.

[Date 83] Date, C. J., An Introduction to Database Systems, vol. II, Addison-Wesley, Read-

ing, Massachusetts (1983). Date's second volume is perhaps the �rst book on advanced

database principles. Of particular interest to coordinated computing are his chapters on

concurrency, recovery, and distributed databases. He also covers material such as security,

integrity, and database machines.

[Davies 78] Davies, C. T., \Data Processing Spheres of Control," IBM Syst. J., vol. 17,

no. 2 (1978), pp. 179{198. Davies describes a database organization based on \spheres of

control." These spheres e�ect nested transactions.

[Eswaran 76] Eswaran, K. P., J. N. Gray, R. A. Lorie, and I. L. Traiger, \The Notions of Con-

sistency and Predicate Locks in a Database System," CACM, vol. 19, no. 11 (November

1976), pp. 624{633. This paper demonstrates that consistency requires two-phase algo-

rithms|a consistent system cannot allow a transaction to acquire new locks after releasing

old ones. Eswaran et al. then discuss the nature of locks, arguing that locks must control

logical, not physical, sections of databases.

[Gray 75] Gray, J. N., R. A. Lorie, and G. R. Putzolu, \Granularity of Locks in a Shared Data

Base," Proc. Int. Conf. Very Large Data Bases, Framingham, Massachusetts (September

1975), pp. 428{451. In the text we speci�ed that locks are associated with individual

records. This paper describes an algorithm for locking sets of resources. The algorithm

deals with records and class structures that are related by hierarchies and acyclic graphs.

They introduce varieties of locks to achieve class-wide locking.

[Gray 79] Gray, J. N., \Notes on Data Base Operating Systems," in R. Bayer, R. M. Graham,

and G. Seegmuller (eds.), Operating Systems: An Advanced Course, Springer-Verlag, New

York (1979), pp. 393{481. Gray focuses on the issues of recovery and locking in transaction

systems. He presents a uni�ed database design based on System R [Gray 81].

[Gray 81] Gray, J., P. McJones, M. Blasgen, B. Lindsay, R. Lorie, T. Price, F. Putzolu, and

I. Traiger, \The Recovery Manager of the System R Database Manager," Comput. Surv.,

vol. 13, no. 2 (June 1981), pp. 223{242. Gray et al. describe an experimental database

system, \System R." System R is based on transactions, recovery protocols for dealing

with failures, transaction logs, and saving system checkpoints.

300 heuristics

[Kohler 81] Kohler, W. H., \A Survey of Techniques for Synchronization and Recovery in De-

centralized Computer Systems," Comput. Surv., vol. 13, no. 2 (June 1981), pp. 149{184.

Kohler surveys both concurrency control mechanisms for distributed databases and recov-

ery mechanisms for database systems. He �rst describes locks, timestamps, and several

other concurrency control mechanisms. He then deals with the general issue of recov-

ery, which includes both the problems of secure storage and the requirements of recovery

procedures.

[Lamport 78] Lamport, L., \Time, Clocks, and the Ordering of Events in a Distributed

System," CACM, vol. 21, no. 7 (July 1978), pp. 558{565. Lamport shows that a process can

keep its clock synchronized with the rest of the system if anytime it receives a timestamped

communication from another process with a clock time greater than its own, it resets its

own clock to that value.

[Lampson 76] Lampson, B. W., and H. E. Sturgis, \Crash Recovery in a Distributed Storage

System," unnumbered technical report, Computer Science Laboratory, Xerox Palo Alto

Research Center, Palo Alto, California (1976). Lampson and Sturgis present an early

version of a two-phase commit algorithm in this unpublished paper.

[Liskov 77] Liskov, B., A. Snyder, R. R. Atkinson, and J. C. Scha�ert, \Abstraction Mecha-

nisms in CLU," CACM, vol. 20, no. 8 (August 1977), pp. 564{576. CLU is a programming

language based on abstraction|principally data abstraction. CLU provides the syntactic

foundation for Argus.

[Liskov 82] Liskov, B., \On Linguistic Support for Distributed Programs," IEEE Trans.

Softw. Eng., vol. SE-8, no. 3 (May 1982), pp. 203{210. This paper describes a message-

based precursor of Argus.

[Liskov 83] Liskov, B., and R. Scheier, \Guardians and Actions: Linguistic Support for

Robust, Distributed Programs," ACM Trans. Program. Lang. Syst., vol. 5, no. 3 (July

1983), pp. 381{404. This paper is a preliminary description of Argus. Its major example

is a distributed mail system that keeps track of mailboxes and forwards mail to the

appropriate destination.

[Reed 78] Reed, D. P., \Naming and Synchronization in a Decentralized Computer System,"

Ph.D. dissertation, M.I.T., Cambridge, Massachusetts (1978). Reprinted as Technical Re-

port TR-205, Laboratory for Computer Science, M.I.T., Cambridge, Massachusetts. Reed

introduces a concurrency control scheme based on keeping multiple versions of mutable

objects and directing requests at the version with the appropriate timestamp.

[Rosenkrantz 78] Rosenkrantz, D. J., R. E. Stearns, and P. M. Lewis, \System Level Con-

currency Control for Distributed Database Systems," ACM Trans. Database Syst., vol. 3,

no. 2 (June 1978), pp. 178{198. Rosenkrantz et al. present and compare several system-

level concurrency control mechanisms based on timestamps. They introduce the Wait-Die

and Wound-Wait algorithms.

[Ullman 82] Ullman, J. D., Principles of Database Systems, 2d ed., Computer Science Press,

Potomac, Maryland (1980). This is a text for an introductory database course. Ullman ties

his development of database systems to other areas of computer science, such as theory

and programming languages.

[Wiederhold 83] Wiederhold, G., Database Design, 2d ed., McGraw-Hill, New York (1983).

In contrast with other introductory books on database systems, Wiederhold concentrates

less on the organization of particular databases and more on the quantitative aspects of

database performance.

[Weihl 83] Weihl, W., and B. Liskov, \Speci�cation and Implementation of Resilient, Atomic

Data Types," SIGPLAN Not., vol. 18, no. 6 (June 1983), pp. 53{64. Weihl and Liskov

discuss atomic and resilient data types, particularly with respect to the emerging imple-

mentation of Argus.

